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Abstract. Calculations of the thermodynamic quantities, and the spectra of spinons, triplet
excitations, and two-particle spin-singlet (�Sz = 0,±1) excitations for a weakly coupled anti-
ferromagnetic S = 1/2 spin chain are made using a mean-field approximation for the interchain
couplings (J2) by the quantum Monte Carlo method. The mass gaps in these excitation spectra are
estimated as functions of the interchain coupling. The critical field Hc , and the temperatures at
which the spinon and singlet gaps close (T1 and T2, respectively) are obtained. Some peculiarities
of the staggered magnetization, the specific heat, and the spin–spin correlation function are found
at T1 = 0.9J2, T2 = 1.5J2,Hc = 3.8J2, as determined by linear function fitting for J2/J1 < 0.15.
The intrachain and interchain couplings, and the staggered magnetization for KCuF3, Sr2CuO3,
and Ca2CuO3 are estimated, and mass gaps are predicted to exist in the spectra of the spinons and
the singlet two-particle excitations.

1. Indroduction

One-dimensional spin systems with antiferromagnetic interactions have received considerable
attention because of their pronounced mechanical effects. One interesting question is that of
whether the ground state is ordered or disordered when interactions between the chains are
introduced. Previously, it was proposed that there is a nonzero critical coupling ratio, below
which the system retains a singlet ground state [1]. Numerical studies of the Heisenberg
model suggested a vanishing critical coupling ratio and that infinitesimally small interchain
couplings should exhibit Néel order [2]. The best agreement with experiments, in contrast
to the case for spin-wave theory [3], is obtained using a mean-field approximation for the
interchain coupling [4–6]. There have been treatments of a one-dimensional antiferromagnet
in an effective staggered field h = (−1)i 4J2〈Szi 〉, with the order parameter 〈Szi 〉 determined by
minimizing the energy. For more accurate simulation of static quantities, one needs to make
allowance for local fluctuations of the staggered field.

Quasi-one-dimensional quantum magnets exhibit several kinds of the elementary
excitation in the magnetic ordered state. For example, the exact solution for the anti-
ferromagnetic spin-1/2 Heisenberg chain shows that the low-lying excitations are spin-1/2
objects [7] (now called spinons), quite different from standard spin waves. The interchain
coupling induces a mass gap for the spinon excitations; this can be derived from the fermionic
model, and in the continuum limit is� = 6.175J2 [5]. However, a single-mode approximation
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for a one-dimensional antiferromagnet in an effective staggered field [5] gives a massless
spin-wave mode along the chain. This result is based on the following assumptions: the
magnitude of the staggered magnetization is independent of the orientation of the staggered
field, and the operators S+(qz � π) and S+(qz � 0) are a Lorentz scalar and vector,
respectively; consequently the dynamical susceptibility χ(π +q,w) is a function ofw2 −v2q2

only.
In this paper we show that an infinitesimally small longitudinal external field breaks the

spin-rotational invariance of the staggered magnetization and the staggered field induces a
gap in the triplet excitation spectrum, which is not symmetrical with respect to the midpoint
of the band (q = π/2). We estimate the two-particle excitation spectrum with respect
to the interchain interaction, and predict new mass gaps for the low-dimensional magnets
KCuF3 [8,9], Sr2CuO3, and Ca2CuO3 [10,11]. The static and dynamic properties of a magnet
can be investigated using various Monte Carlo (MC) schemes. The Green-function MC or,
more generally, the projection-operator method is applicable at zero temperature (T = 0)
only, and the final result depends on the trial wave function. For T > 0, the MC method
is based on the Suzuki–Trotter discretization of imaginary time, and the loop-cluster-update
algorithm may be used. In this scheme, aD-dimensional quantum system is transformed into
the corresponding (D + 1)-dimensional classical system, with the accuracy of the exponential
operator decomposition ∼1/(mT/J )2, where m is the size of the complementary dimension.
The decrease of the interchain coupling (λ = J2/J1) leads to an increase in value of m that is
∼1/λ, because the Néel temperature is a function of TN which is ∼λ [5]. According to scaling
theory, the correlation radius of the spinon interaction is inversely proportional to the gap in
the excitation spectrum, ξ ∼ 1/� ∼ 1/λ, L � 4ξ [5]. So we can give an estimate for the
lattice size N = LD2Dm: N ∼ 2D/λD+1, and for λ = 0.05, N = 1280 000 sites are required
to calculate the spinon excitation spectrum at the various temperatures and fields. Therefore,
we are compelled to use a combination of two methods: the Monte Carlo method and the
mean-field approximation.

2. Model and method

We shall consider the Heisenberg model with negative interactions between nearest neighbours
with S = 1/2 directed along an external-field OZ-direction. The Hamiltonian takes the form

H = −J1

∑
i,j

Si,j · Si+1,j − J2

∑
i,j,δ

Si,j · Si,j+δ −
∑
i

H zSzi (1)

where J1 < 0, J2 < 0 are the intrachain and interchain couplings, λ = J2/J1,Hz is an external
magnetic field, and δ is summed over the nearest neighbours in the transverse directions (z = 4).
Now we transform the Hamiltonian (1) into an effective single-chain problem using a mean-
field treatment of the interchain coupling [5, 6]. The Hamiltonian now takes the form

H1 = −J1

L∑
i=1

Si · Si+1 −
L∑
i=1

hiS
z
i −

L∑
i=1

Hz
i S

z
i − 2LJ2m

2
0. (2)

Here m0, h are the staggered magnetization and field determined as

m0 = (1/L)
L∑
i=1

(−1)i〈Szi 〉 hz = −4J2m0
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in [5, 6]. We modified this approach to take into account the quantum and temperature
fluctuations, and the effective field is determined from the spin–spin correlation function:

m0 = (2/L)
L/2∑
i=1

√
abs(Sz0S

z
i ) hzi = 4J2 sgn(Szi )

√
abs(Sz0S

z
i ). (3)

Thus we have a one-dimensional antiferromagnet in an effective staggered field h, to be
calculated on the basis of a spin–spin correlation function averaged in a MC procedure with
5 MC steps/spin. So a site of the chain (j) is selected using random numbers for every spin
configuration in the MC procedure, and the sublattice field is set up starting from this site:

h(i − j) i = j + 1, . . . , j + L/2 i = j − 1, . . . , j − L/2

according to (3). The thermodynamic average of the effective field is a translation-invariant
quantity and 〈hzi 〉 = 4J2m0. Our approach is different from that of [5, 6] while 〈h2

i 〉 �= 〈hi〉2.
The algorithm and MC method have been considered in detail earlier [12, 13]. The MC

simulations were performed for several lengths of chains L = 100, 200, 400 and m = 32, 64,
96, 124 with periodic boundary conditions. For each chain, from 4000 to 7000 MC steps per
spin were used to reach equilibrium, and another 3000 to 6000 MC steps per spin were used
for the averaging. One MC step is achieved by rotating all spins on an L × 2m lattice. The
systematic error due to quantum fluctuations is proportional to 1/(mT/J )2 and is of the order
of 4% for the minimum temperature T/J = 0.05 used in the calculations. The root mean
square errors of the computed quantities lie in the ranges 0.1% to 0.6% for the energy, and
6% to 11% for the susceptibility. The errors due to the finite dimensions of the lattice can be
neglected, since ξ < L/4.

Let us consider the possible spin excitations in this model. There are spin waves
(magnons), pair spin excitations, and nonlinear excitations: solitons, kink–antikinks, and
breathers (now called spinons). The spinon may be considered as a quasi-particle consisting
of bound spins. The phenomenological spinon interpretation is as a domain wall in the 1D
antiferromagnetic Ising model. The following quantities will be calculated below: the energy,
the specific heat C = dE/dT , the magnetization, the susceptibility χ = M/H in an external
field, the spin–spin correlation function for the longitudinal (〈Sz(0)Sz(r)〉) and transverse
(〈S+(0)S−(r = 1)〉) spin components, and the Fourier spectrum

S(q) = (2/L)
L/2∑
r=1

exp(−iqr)(Sz0S
z
r ).

The excitation spectrum can be calculated from imaginary-time quantum Monte
Carlo data, where the inherent difficulty of performing inverse Laplace transformations is
encountered. In order to overcome this difficulty, a least-squares method [15] and a maximum-
entropy method [16] have been proposed. In this report, we do not aim to obtain the dynamical
correlation function S(q, ω) for the whole real-frequency domain, but simply intend to extract
the low-lying eigenvalues as a function of q.

Let us introduce an imaginary-time correlation function S(q, τ ) as follows:
St (q, τ ) = 〈exp(Hτ)Szq exp(−Hτ)Sz−q〉MC

Szq = (1/L)
L∑
j=1

Szj exp(iqj)
(4)

and a two-particle correlation function Ss1,2 , corresponding to the action of two operators SzjS
z
j+l

and S+
j S

−
j+l on any states—for example, singlet or Néel states:

SzjS
z
j+l|sj , sj+l〉 = (1/4)|t0,j t0,j+l〉

(1/2)(S+
j S

−
j+l + S−

j S
+
j+l)|sj , sj+l〉 = (−1/4)(|t−1,j t1,j+l + t1,j t−1,j+l〉)
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where sj and t0,±1,j are respectively called singlet and triplet states with Sz = 0,±1. The
total-system spin does not change under the action of these operators (

∑
i S

z
i = 0) and these

excitations are of singlet type. One can write Ss1,2 as

Ss1(q, τ ) = 〈exp(Hτ)Szq,s1 exp(−Hτ)Sz−q,s1〉MC (5a)

where

Szq,s1 = (1/(L− l))

(L−l)/2∑
j=1

[Sz2j S
z
2j+l exp(iq(2j + l)) + Sz2j−1S

z
2j+l−1 exp(iq(2j + l − 1))]

and

Ss2(q, τ ) = 〈exp(Hτ)S+,−
q,s2

exp(−Hτ)S+,−
−q,s2〉MC (5b)

where

S+,−
q,s2

= (1/2(L− l))

(L−l)/2∑
j=1

[(S+
2j S

−
2j+l + S−

2j S
+
2j+l) exp(iq(2j + l))

+ (S+
2j−1S

−
2j+l−1 + S−

2j−1S
+
2j+l−1) exp(iq(2j + l − 1))].

Here 〈· · ·〉MC denotes a Monte Carlo average of the quantity at a given temperature T , and
the momentum changes in the range of 0 < q < π and is equal to q = πn/(L − l), where
n = 0, 1, . . . , L − l and l = 0, 1, . . . , 12. In quantum MC simulations, the imaginary
time τ takes a set of discrete numerical values τ = βn/m, where n = 1, 2, . . . , m and
β = 1/(kBT ). St,si (q, τ ) is obtained by evaluating Szq,s for two Trotter layers separated by
m/βτ, 0 < τ � β/2, in the transformed two-dimensional Ising system. The spectral function
can be approximately represented as

St,s(q, τ ) =
∑
k

|〈GS|Szq,s |k, q〉|2 exp(−τ(Et,s(q)− E0)) (6)

where the sum is taken over eigenvalues, and |GS〉 and E0 are the ground state and the
ground-state energy. Using the nonoverlapping-bands approximation, |〈GS|Szq |k, q〉|k=1 is
considerably larger than |〈GS|Szq |k, q〉|k�2, as has been pointed out already [17]; we can
extract the elementary excitation spectrum from the Monte Carlo data for S(q, τ ). Three types
of function Si(q, τ ) associated with triplet and singlet excitations are satisfactorily fitted by an
exponential dependence on time τ in the range of τ0 < τ < τmax , on the basis of which the
dispersion relation is calculated as follows:

Et,s(q) = −ln([St,s(q, τ )/St,s(q, τ0)])/(τ − τ0) (7)

where τ0 = 1/Et,si and τmax is close to the onset time for statistical fluctuations in S(q, τ ).

3. Results and discussion

In figure 1 the normalized values ofSt,s1,2(q, τ ) are plotted on a logarithmic scale as a function of
the distance between the Trotter layers for various values of q and for T/J1 = 0.05, λ = 0.05.
A single-exponential decay ofS(q, τ ) is observed, except for the small-τ region. The triplet and
singlet excitation spectra are shown in figure 2 for a pure 1D Heisenberg chain for T/J1 = 0.05.
The dips near the top of the dispersion curve are due to the deviation of S(q, τ ) from the straight
line for small τ . The MC data are well described by the simple formEt,s1,2(q)/J1 = At,s sin(q),
where At = 1.63(3), As = 1.56(2) and indices t, s denote the triplet and singlet excitations.
The approximate triplet dispersion relation agrees with the exact result for the one-particle
excitations Et(q)/J1 = (π/2) sin(q), 0 < q < π [7]. The two-particle excitation spectrum
is split up into two branches of excitations corresponding to �Sz = 0 and �Sz = ±1 by
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the action of the staggered field, as shown in figure 3. The singlet (�Sz = ±1) excitation
spectrum exhibits minima at the momenta q �= 0, π . These energy minima are associated with
a mass gap of �s2 .

0 10 20 30

0

5

10

15

20

25

a
1
2
3
4
5
6
7

-l
n(

S
 t  

(q
,t)

/S
 t  

(q
,t

=
1)

) 
m

T

n

0 5 10 15 20 25 30

0

5

10

15

20 b

1
2
3
4

-l
n(

S
s2

 (
q,

t)
/S

s2
 (

q,
t=

1)
) 

m
T

n

Figure 1. The normalized imaginary-time correlation function −ln(Sα(q, t)/Sα(q, t = 1))mT
(where t = mτ/β)) for an antiferromagnet versus the distance between the Trotter layers n for
λ = 0.05 and q = 0.251 (1), 0.44 (2), 0.565 (3), 0.754 (4), 1.57 (5), 2.7 (6), 3.11 (7) with α = t

(a) and q = 1.57 (1), 1.63 (3), 1.86 (4), 3.08 (2) with α = s2 (b) for mT = 4.8.

The dependence of E(q) can be described by three parameters: the energy maximum
Emax or the top of the boundary of the spin excitation band, the velocity v, and a gap energy
� at the centre and at the edges of a band. These parameters were determined by fitting the
MC results to the following functions:

E(q) =
√
(�2 + v2q2) q < π/8

E(q) =
√
(�2 + v2(π − q)2).

Some of the results are shown in figure 3 by solid lines. The triplet excitation spectrum
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Figure 2. The triplet (a) and singlet (b) excitation spectra of the AF chain (λ = 0) as functions
of the momentum q. The fitting functions are shown by dashed lines: Et (q)/J1 = 1.62 sin(q) (a)
and Es1,2/J1 = 1.56 sin(q) (b).

has no symmetry with respect to q = π/2, the midpoint of the Brillouin zone. The gap
is caused by nonlinear excitations at q = 0, and is described in terms of spinons. In view
of the large error near q = π/2, the lower limits of the top boundaries of the bands of the
triplet and singlet (�Sz = 0) excitations are determined and, together with the mass gap at
q = π , are represented in figure 4. Et,s1,max , the lower limit of the energy maximum, fits
well on the straight line Et,s1,max/J1 � 1.47(3) + 4.8(3)λ. The Néel temperature of a 3D
antiferromagnet is proportional to the energy of the spin-wave band zSJ in the random-phase
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Figure 3. The triplet (a), singlet (�Sz = 0) (b), and (�Sz = ±1) (c) excitation spectra of
the antiferromagnet versus the momentum q for λ = 0.05 (1), 0.2 (2). The fitting functions
are Et/J1 = √

([0.36(5)]2 + [1.75(4)]2q2) (1), Et/J1 = √
([0.95(2)]2 + [1.92(8)]2q2) (2),

Es1/J1 = √
([0.73(2)]2 + [1.91(4)]2q2) (1), Es1/J1 = √

([1.76(7)]2 + [1.3(6)]2q2) (2).
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Figure 4. (a) The lower limits of the top boundaries in the triplet (1) and singlet (�Sz = 0)
(2) excitation spectra versus the normalized interchain coupling J2/J1. The fitting function is the
straight line Et/J1 = 1.47(3) + 4.8(3)λ. (b) The gap energies as functions of λ for the triplet, at
q = π (1) and q = 0 (2), and the singlet, with �Sz = 0 (4) and �Sz = ±1 (3) excitations. The
fitting functions are�sp/J1 = 6.2(2)λ with λ < 0.15 (1: dashed line) and�t/J1 = 4.8(3)λ0.58(3)

(2: full line).

approximation. Below, we shall show that the dependence TN(λ) on the interchain coupling
is similar to Et,s1,max(λ). The values of the triplet gap at q = 0 are approximated by a straight
line, �sp/J1 = 6.2(2)λ, for λ < 1/8, and agree well with the exact solution for a fermionic
model of a one-dimensional antiferromagnet in an effective staggered field, derived on the
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basis of the approximation of the continuum limit and constant couplings [5] � � 6.175|J2|,
as illustrated in figure 4(b). The triplet gap is parametrized at q = π as�t/J1 = 4.8(3)λ0.58(3).
A similar power law characterizes the singlet gap,�s(λ). The singlet gaps are independent of
the distance between two spins in the triplet:

· · · ↑ · · ·︸︷︷︸
l

↓ · · · ↑ · · ·︸︷︷︸
l

↓ (�Sz = 0)

or

· · · ↑ · · ·︸︷︷︸
l

↑ · · · ↓ · · ·︸︷︷︸
l

↓ (�Sz = ±1)

since the mean-field approximation is used. The gaps in the triplet excitation spectrum at the
(q = 0) centre and at the (q = π ) boundary of the zone disappear at some critical temperatures
T1 and T2, as plotted in figure 5(a). The magnitude of T2 is determined from a fit of the MC
results to the function �t/J1 = A((T − T2)/J1)

β with three parameters A, β, T2, where β is
varied in the range of 0.4–0.6. The line approximations T1/J1 = 0.9(1)λ and T2/J1 = 1.5(2)λ
are obtained from the five points forλ � 1/8. The gap closure in the singlet excitation spectrum
(�Sz = 0) occurs in the vicinity of temperature T2, and the �Sz = ±1 excitation becomes
massless at T > T2 (see figure 5(b)).

The external magnetic field produces an effect also on the singlet and triplet excitation
spectra. The excitation spectra of the one-dimensional AF in the staggered field are shown
for different external fields at low temperatures in figure 6. The asymmetry of the triplet
excitation spectrum is due to the different quasi-particles. So the gaps in the excitation spectra
are attributable to spinons at q = 0 and magnons at q = π . They are closed respectively at the
external fields Hc1 and Hc2, as illustrated in figure 7(a). The minima in the singlet�Sz = ±1
excitation spectrum are revealed at q = 0, π forH > Hc1. When the average of the staggered
field tends to zero, the spin excitation spectrum is similar to the spectrum of a one-dimensional
chain, and Emax,t /J1 ∼ π/2. The singlet excitation spectrum becomes massless at H > Hc2
as shown in figure 7(b).

Now we shall consider the static magnetic properties of the AF in the staggered-field
model and interpret some distinctive behaviours of the temperature and field as regards the
thermodynamic characteristics. Long-range order exists in the staggered field and breaks
down at the Néel temperature TN , which can be determined from the disappearance of the
staggered magnetization, σ → 0, plotted in figure 8(a). The staggered magnetization and
the susceptibility are quite independent of temperature for low temperatures T < T1 and
χ → 0 as shown in figure 9(b). The greatest variations of the longitudinal component of
the square of the total spin, 〈(Sz)2〉, versus temperature are revealed at the temperatures T1

and T2 shown in figure 8(b). The absolute value of the nearest-spin correlation functions
exhibits a sharp decrease and the specific heat has an additional maximum in the vicinity of
T � T1 shown in figure 9(a). These effects can be caused by spinon excitations, the density
of which shows a sharp rise upon closure of the gap in the triplet excitation spectrum at
the Brillouin zone centre. From fit of the temperature dependence of C(T ) with the function
C(T )/kBN = A(T/J1)

α exp(−�/T )with three parametersA, α,�, a satisfactory agreement
of the � value is obtained with the gap in the spinon excitation spectrum. For example, the
fitting function C(T )/kBN = 0.3/(T /J1)

2.0(2) exp(−0.61(6)J1/T ) plotted in the inset of
figure 9 for λ = 0.1 gives the gap value �/J1 = 0.61(6), which agrees well with the exact
result �sp/J1 = 0.6175 [5].

The temperature dependence of the susceptibility exhibits a ‘crevasse’ in the curve for
T > T2 (figure 9(b)), which is due to a rise of the density of states of the singlet excitations
occurring because �s1,2 → 0 at T � T2. The existence of a gap in the triplet excitation
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Figure 5. The gap energies�α in the triplet excitation spectrum forα = t , λ = 0.05 (1), 0.1 (2), 0.2
(3) at q = π (a) and the singlet excitation spectrum for α = s1 (1, 3, 6), s2 (2, 4, 5), λ = 0.05 (1, 2),
0.1 (3, 4), 0.2 (5, 6) (b) against temperature. The fitting functions�/J1 = A((T − T1,2)/J1)

β are
plotted as solid and dashed lines. The temperature dependencies of the triplet gaps at q = 0 for
λ = 0.1 (2), 0.2 (3) are shown in the inset.

spectrum is confirmed by the field dependence of the magnetization plotted in figure 10.
For T < T1, the magnetization is equal to zero down to the critical field Hc, at which the
staggered magnetization decreases sharply and the total magnetization exhibits a jump. These
discontinuities of the first kind pass into gradual continuous dependencies ofM(H), σ (H) for
T > T1. The critical fields calculated fit well on the straight line Hc/J1 = (3.8 ± 0.3)λ over
the range of 0.05 � λ � 0.15.

The Néel temperatures and the staggered magnetizations determined for the temperature
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Figure 6. The spectra Eα(q) of the triplet excitations with α = t , H/J1 = 0.05 (1), 0.15 (2),
0.35 (3) (a), and singlet excitations with α = s1, H/J1 = 0.05 (1), 0.35 (2) (b) and α = s2,
H/J1 = 0.05 (1), 0.15 (2), 0.4 (c) for various magnetic fields as functions of the momentum q.
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(2, 3), λ = 0.1 (1, 2), 0.2 (3, 4) (b) against the external magnetic field H/J1.

range of (0.15–0.25)TN are plotted in figure 11. For comparison, we show predictions
for TN(λ) and σ(λ) from the spin-wave theory with kinematic interactions (marked ‘SW’)
[3] and the chain mean-field theory (marked ‘CMF’) [5]. The spin-wave theory predicts
TN/J1 = 2.1S(S + 1)

√
λ, σ ≈ 1/ln(1/λ) [3] and the chain mean-field theory leads to

TN/J1 ∼ λ, σ ∼ √
λ up to logarithmic corrections. The MC results are in good agreement

with the chain mean-field results for λ � 1/8. This means that the spinon excitations provide
the main contribution to the spin excitation density for weakly coupled chains.

Now we will apply our results for interpretation and to predict new effects for the low-
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Figure 8. The staggered magnetization σ (a) and the longitudinal component of the square of the
total spin, 〈(Sz)2〉, (b) as functions of the temperature for λ = 0.05 (3), 0.1 (1), 0.25 (2).

dimensional magnets. From an inelastic neutron scattering experiment, the intrachain exchange
is estimated as J1 = 203 K in KCuF3 [8]. The intrachain exchange interaction for Sr2CuO3

as estimated from the fit of the magnetic susceptibility [20] to theoretical calculations using
conformal field theory is JE = 2200(200) K [22] and the numerical estimate for the finite-
length chain is JB = 2800 K [18]. The Néel temperatures are TN ≈ 39 K for KCuF3 [9],
TN ≈ 5.4 K for Sr2CuO3, and TN ≈ 11 K for Ca2CuO3 [10]. From the MC simulations of
the Néel temperature and the staggered magnetization, the intrachain and interchain couplings
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of the temperature for λ = 0.05 (4), 0.1 (1), 0.15 (2), 0.25 (3). The inset shows the fitting function
C(T )/(kBN) = 0.3/(T /J1)

2 exp (−0.61(6)J1/T ) (solid line) for λ = 0.1.

and the magnetic moment at a site are determined as J2 ≈ 20 K, σ ≈ 0.6 µB for KCuF3,
J1 ≈ 2840 K, J2 ≈ 2.8 K, σ � 0.06 µB for Sr2CuO3, and J1 ≈ 2209 K, J2 ≈ 5 K,
σ � 0.09 µB for Ca2CuO3. The predicted value of the staggered magnetization exceeds the
experimental result σ = 0.5µB for KCuF3 [19] and is in good agreement with σ = 0.06(3) µB
for Sr2CuO3 [10] and σ = 0.09(1) µB for Ca2CuO3 [10, 11]. The overestimation of the
magnetization may be attributed to spin–phonon interaction which causes the additional spin
reduction. It is of interest to note that the ground state of the similar compound KCuCl3 [21]
is the singlet state. The intrachain coupling estimated for Sr2CuO3 matches well with
JB = 2800 K determined by Bonner–Fisher theory [18].

The sharp rise in the energy-dependent neutron scattering intensity observed around
ω = 10 meV [9] for KCuF3 can be attributed to the interaction between the neutrons and
the spinons excitation at ωMC = 10.6 meV. From the estimated singlet excitation spectrum,
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Figure 10. The field dependencies of the staggered magnetization σ (a) and the magnetization
M (b) for λ = 0.1 (1, 3), 0.25 (2) at T = TN/4 (1, 2) and at T = 0.65TN (3).

nontrivial predictions are given for the singlet gap energy atωs(0, 0, π) � 19 meV for KCuF3,
which can be obtained from observation by means of light scattering and from the linewidth of
the AF resonance. The decrease of the integrated intensities of the magnetic Bragg reflections
within the limits ∼12% at T ≈ 3.5 K for Sr2CuO3 and the decreasing local field at the muon
sites within ∼15% at T � 7 K are due to the closure of the gap in the spin excitation spectrum
at T MC2 � 4.3 K for Sr2CuO3 and at T MC2 � 8.3 K for Ca2CuO3. The mass gaps in the singlet
excitation spectra are determined to lie at ωs(0, 1/2, 1/2) � 22 meV for Ca2CuO3 and at
ωs(0, 1/2, 1/2) � 17 meV for Sr2CuO3.

Summarizing our results, we have determined the energies of the gaps in the spectra of
triplet and singlet excitations for weakly coupled AF chains. The spinon gap disappears at the
critical temperature T1/J1 = 0.9λ; the triplet gap at q = π is at the critical magnetic field
Hc/J1 = 3.8λ and the singlet gaps are closed at T2/J1 = 1.5λ. At these temperatures, the
staggered magnetization, the specific heat, and the spin–spin correlation functions exhibit some
distinctive behaviours. The mass gaps in the triplet and singlet two-particle excitation spectra
are predicted for KCuF3, Sr2CuO3, and Ca2CuO3. The neutron scattering at ω = 10 meV
in KCuF3 is successfully explained, as is the inflection point of the staggered magnetization
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at T � 0.65TN for Sr2CuO3 and Ca2CuO3. The validity of the MC results is demonstrated
by the good agreement of the Néel temperature, the staggered magnetization, and the spinon
mass gap with results from general scaling arguments.
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